XPD c.934G>A polymorphism of nucleotide excision repair pathway in outcome of head and neck squamous cell carcinoma patients treated with cisplatin chemoradiation
نویسندگان
چکیده
This study aimed to investigate the associations of XPC c.2815A>C, XPD c.934G>A and c.2251A>C, XPF c.2505T>C and ERCC1 c.354C>T single nucleotide polymorphisms (SNPs) of nucleotide excision repair pathway in outcome of head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin (CDDP) chemoradiation. Patients with XPC c.2815AC or CC and XPD c.934GA or AA genotypes had 0.20 and 0.38 less chances of presenting moderate/severe ototoxicity and nausea, respectively. Patients with XPD c.934AA and c.2251AC or CC genotypes had 8.64, 12.29 and 3.55 more chances of achieving complete response (CR), consistent ototoxicity and nephrotoxicity, respectively. AA haplotype of XPD and ACT haplotype of XPD and ERCC1 SNPs were associated with 9.30 and 3.41 more chances of achieving CR and consistent nephrotoxicity, respectively. At 24 months of follow-up, patients with XPD c.934AA genotype presented lower progression-free survival and overall survival in Kaplan-Meier estimates, and differences between groups remained the same in univariate Cox analysis. Patients with XPD c.934AA genotype had 2.13 and 2.04 more risks of presenting tumor progression and death than others in multivariate Cox analysis. Our data present preliminary evidence that XPC c.2815A>C, XPD c.934G>A and c.2251A>C, and ERCC1 c.354C>T SNPs alter outcome of HNSCC patients treated with CDDP chemoradiation.
منابع مشابه
ERCC1 polymorphism in patients with locally advanced head and neck squamous cell carcinoma treated with concomitant chemoradiation: Prevalence and impact on treatment efficacy.
6032 Background: Excision repair cross-complementation group 1 (ERCC1) is a gene coding for the nucleotide excision repair complex. Its increased expression and polymorphism at codon 118 have been linked to poor response to chemotherapy or chemoradiation in several types of cancer. ERCC1 removes the cisplatin adducts on the DNA of cells and its polymorphism appears to be a marker of chemotherap...
متن کاملPrognostic Significance of MMP2 and MMP9 Functional Promoter Single Nucleotide Polymorphisms in Head and Neck Squamous Cell Carcinoma
Objective(s) Matrix metalloproteinases comprise a family of enzyme that is able to degrade components of extra cellular matrix. There are single nucleotide polymorphisms in the promoter regions of several genes with ability to influence cancer susceptibility. The aim of this study was to analyses association between MMP2 and MMP9 promoter polymorphisms and head and neck squamous cell carcinoma...
متن کاملXPD Polymorphisms and Risk of Squamous Cell Carcinoma of the Head and Neck in a Korean Sample
OBJECTIVES XPD is a major player in nucleotide excision repair, which is one of the basic pathways of DNA repair. The objective of this study was to investigate the association of XPD single nucleotide polymorphisms (SNPs) and the risk of squamous cell carcinoma of the head and neck (SCCHN) in Koreans. METHODS We performed XPD +23591G>A and +35931A>C genotyping in 290 SCCHN patients and 358 c...
متن کاملQuantification of excision repair cross-complementing group 1 and survival in p16-negative squamous cell head and neck cancers.
PURPOSE Multimodality treatment of squamous cell carcinoma of the head and neck (SCCHN) often involves radiotherapy and cisplatin-based therapy. Elevated activity of DNA repair mechanisms, such as the nucleotide excision repair (NER) pathway, of which ERCC1 is a rate-limiting element, are associated with cisplatin and possibly RT resistance. We have determined excision repair cross-complementin...
متن کاملPredictive Biomarkers and Personalized Medicine Quantification of Excision Repair Cross-Complementing Group 1 and Survival in p16-Negative Squamous Cell Head and Neck Cancers
Purpose: Multimodality treatment of squamous cell carcinoma of the head and neck (SCCHN) often involves radiotherapy and cisplatin-based therapy. Elevated activity of DNA repair mechanisms, such as the nucleotide excision repair (NER) pathway, of which ERCC1 is a rate-limiting element, are associated with cisplatin and possibly RT resistance. We have determined excision repair cross-complementi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017